Crystal and Molecular Structure of a Synthetic Compound Related to the Penicillins and Cephalosporins, 3-Benzyl 7-t-Butyl 2,2-Dimethyl-8-oxo-4-thia-1-aza-6 α-bicyclo[4.2.0]octane- $3 \beta, 7 \alpha$-dicarboxylate

By Kalyani Vijayan,"† B. F. Anderson, and D. C. Hodgkin, Laboratory of Molecular Biophysics, Department of Zoology, South Parks Road, Oxford OX1 3PS

Abstract

An intermediate obtained by Lowe and Ramsay in the synthesis of a homopenicillin has been shown by X-ray analysis to have a structure including a β-lactam ring fused to a thiomorpholine ring carrying 2,2 -dimethyl and 3-benzyloxycarbonyl substituents. The compound crystallises in the space group $P 2_{1} / c$, with $Z=4$ in the unit cell of dimensions $a=19.160, b=6 \cdot 369, c=19.052 \AA, \beta=111.59^{\circ}$. The crystal structure was solved from diffractometer data by the symbolic addition method and refined to an R value of $5 \cdot 16 \%$ for 2697 independent reflections by iterative block-diagonal least-squares procedures. The central six-membered ring exists in a distorted chair form and is oriented at $140 \cdot 8^{\circ}$ to the fused β-lactam ring.

Although X-ray crystallographic measurements were used early to find the chemical structures of both penicillins and cephalosporins, rather few accurate X-ray analyses have been made since in either series..$^{1-3}$ The present study began as an aid to the synthetic experiments of Lowe and Ramsay ${ }^{4}$ to define the structure and stereochemistry of the homopenicillins they had obtained. The particular stereoisomer investigated was found not to have the gross structure (I), as at first hoped for, but to correspond with structure (II), with

the benzyloxycarbonyl side-chain and dimethyl group transposed. As would be expected on a number of grounds, the compound is biologically inactive. It is all the same interesting to compare details of the

[^0] Science, Bangalore 12, India.
${ }^{1}$ D. C. Hodgkin and E. N. Maslen, Biochem. J., 1961, 79, 393.
${ }^{2}$ R. D. Diamond, D. Phil. Thesis, University of Oxford, 1963.
${ }^{3}$ R. M. Sweet and L. F. Dahl, J. Amer. Chem. Soc., 1970, 92, 5489.
molecular geometry it presents with that observed in both biologically active and inactive β-lactams.

EXPERIMENTAL

Thin transparent needle-like crystals were supplied by Lowe and Ramsay and were recrystallised as larger, acicular plates by solution in ether and precipitation with light petroleum. The unit-cell dimensions were determined from preliminary measurements on oscillation and Weissenberg photographs and refined on a Hilger Watts four circle diffractometer.

Crystal Data.- $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}, \quad M=405.5$. Monoclinic, $a=19 \cdot 160 \pm 0.003, \quad b=6.369 \pm 0.002, \quad c=19.052 \pm$ $0.003 \AA, \beta=111.59 \pm 0.10^{\circ}, U=2161.9 \AA^{3}, D_{\mathrm{m}}=1.221$ (by flotation), $Z=4, D_{\mathrm{c}}=1 \cdot 243, F(000)=216$. Space group $P 2_{1} / c$. Cu- K_{α} radiation, $\lambda=1.5418 \AA$.
Intensity data were collected from a crystal 1 mm long and ca. 0.40 mm wide on a computer-controlled Hilger and Watts four-circle diffractometer fitted with a scintillation counter, by use of nickel-filtered copper K_{α} radiation. The crystal was mounted with the b^{*} axis parallel to the ϕ axis. The X-ray intensities were measured using the $\omega-2 \theta$ scan, in accordance with the ordinate analysis procedure described by Watson et al. ${ }^{5}$ A total of 3353 independent reflections were measured within the range $20 \leqslant 130^{\circ}$, of which 2697 reflections had integrated intensities $>\sigma(I)$. The data were corrected for Lorentz and polarisation factors and also for the crystal-shape factor. ${ }^{6}$

Structure Determination.-The structure was solved by the symbolic addition procedure. ${ }^{7}$ Normalised structure factors, $E_{h . N}$, defined as

$$
\left|E_{h}\right|^{2}=\left|F_{h}\right|^{2} / \varepsilon \sum_{j=1} f_{j}^{2}
$$

${ }_{5}^{4}$ G. Lowe and M. V. J. Ramsay, preceding paper.
${ }^{5}$ H. C. Watson, D. M. Shotton, J. M. Cox, and H. Muirhead, Nature, 1970, 225, 806.
${ }^{6}$ A. C. T. North, D. C. Phillips, and F. S. Matthews, Acta Cryst., 1968, $A, 24,351$.
${ }^{7}$ I. L. Karle and J. Karle, Acta Cryst., 1966, 21, 849.
where $\varepsilon=2$ for the $h 0 l$ and the $0 k 0$ data and $\varepsilon=1$ otherwise, were calculated using the temperature factor and the absolute scale-factor derived from Wilson statistics. ${ }^{8}$ The distribution of the E values and the other relevant statistics presented in Table 1 agree well with the corresponding theoretical values for centrosymmetric structures.

Table 1

E Statistics		
	Calc.	Obs.
$\langle E \mid\rangle$	0.798	$0 \cdot 826$
$\langle \| E^{2}-1\| \rangle$	0.968	0.949
$\left\langle E^{2}\right\rangle$	1.0	1.010
\% Data with		
$\|E\|>1$	32.0	30.82
$E \mid>2$	$5 \cdot 0$	5.06
$\|E\|>3$	$0 \cdot 3$	$0 \cdot 27$

A \sum_{2} listing of interactions was computed ${ }^{9}$ using all reflections with $\left|E_{h}\right| \geqslant 1.7$. The phases of three reflections with large $\left|E_{h}\right|$ values and large numbers of interactions were fixed to specify the origin. In addition, five more symbolic phases were assigned as follows:
$\left.\begin{array}{llllc}h & l & k & \left|E_{h}\right| & \text { Sign } \\ 4 & \overline{17} & 2 & 4 \cdot 195 & + \\ 7 & 11 & 3 & 3 \cdot 802 & + \\ 7 & 8 & 4 & 3 \cdot 315 & + \\ 8 & \overline{12} & 5 & 3 \cdot 361 & A \\ 5 & \overline{10} & 5 & 3 \cdot 163 & B \\ 7 & \overline{19} & 2 & 3 \cdot 382 & C \\ 4 & 11 & 1 & 2 \cdot 950 & D \\ 4 & \overline{8} & 5 & 2 \cdot 599 & E\end{array}\right\}$ Origin

The criterion used for accepting any new sign from the relation: $S E_{h} \sim S \sum E_{k} E_{h-k}$ was that the probability: $P_{+}\left(E_{h}\right)=\frac{1}{2}+\frac{1}{2} \sum_{3} \sum_{2}^{k} \sum_{2}^{-3 / 2}\left|E_{k}\right| \sum E_{k} E_{h-k}$ should be $\geqslant 99.75 \%$. Phases of 267 out of 291 reflections with $\left|E_{h}\right| \geqslant 1.7$ could thus be determined from the starting set. In the course of the sign determination, relationships of the type $C=A B, E=-A, D=-A, A=+$ and $E=+$, were indicated very strongly. Hence, a three-dimensional Fourier map was computed for the sign combination, $A=+, B=+, C=+, D=-$, and $E=-$ using the $267 E$ values as coefficients. The position of the sulphur atom was clearly indicated in the E map. Identification of other atomic sites was, however, not unambiguous, as there were nearly 65 peaks which appeared as high as might be expected for the lighter atoms in the molecule.* It was then decided to repeat the symbolic addition procedure using reflections with $\left|E_{h}\right| \geqslant 1.4$ and a lower acceptance limit of 99.55% for the probability of any interaction. With these modifications, the signs of 472 reflections were determined by use of a computer programme. ${ }^{9}$ It was noticed that the signs of the 267 reflections used for the earlier E map remained exactly the same. In the E map computed with 472 reflections, the sulphur atom came up at essentially the same position as in the first map and the positions of all the non-hydrogen atoms other than those in the t-butyl group could clearly be identified. There were

[^1]four spurious peaks in the map, the heights of which were of the order of that of the lowest peak for a real non-methyl atomic site.

A structure-factor calculation with the 25 atoms located from the E map gave $R 30 \cdot 34 \%$. An overall temperature factor of $4 \AA^{2}$ was used. Two rounds of block-diagonal least-squares refinement with individual isotropic temperature factors reduced R to 23.96%. The carbon atoms in the t-butyl group could also be located from an electrondensity map computed at this stage. The structure was further refined to $R \mathbf{1 6 . 3 1 \%}$ in five more structure-factor least-squares cycles. Reflections measuring less than three times the respective estimated standard deviations were omitted from subsequent calculations and anisotropic temperature factors were introduced. Three further SFLS cycles brought R to 10.07%. A difference-Fourier map was then synthesised and all the hydrogen atoms except those belonging to the t-butyl group (18 out of 27) could be located. One more refinement cycle including these 18 hydrogen atoms reduced R to $5 \cdot 67 \%$. The remaining 9 hydrogen atoms could also be located from a new differenceFourier map. Five more cycles of SFLS calculations were carried out and the final R was $5 \cdot 16 \%$. In the foregoing calculations, hydrogen atoms were refined isotropically, and atomic scattering factors were taken from ref. 10. In the final least-squares cycle, the indicated shifts for all but six parameters were less than the corresponding standard deviations. Six hydrogen atom parameters, however, had least-squares shifts lying between σ and 2σ.

A residual electron-density map was synthesised at the end of the refinement and the largest density in both the positive and the negative regions was $<0 \cdot 1$ e. \dagger

RESULTS AND DISCUSSION

The final positional parameters of the atoms are given in Table 2. Stereoscopic views of the molecule are shown in Figure 1, and the bond lengths and bond angles of the non-hydrogen atoms in Figures 2(a) and 2(b). Those involving the hydrogen atoms are recorded in Table 3. The standard deviations of the bond lengths and angles were calculated ignoring the offdiagonal terms of the inverse matrix and should probably be increased by a factor of $c a .1 \cdot 5$. The stereochemical form of the molecule is such that the hydrogen atom at $C(7)$ is trans to the hydrogen atom at $C(6)$, as had been established by n.m.r. spectroscopy, ${ }^{4}$ and also to that at $\mathrm{C}(3)$. The configuration of the carbon chains attached to the β-lactam ring in this particular isomer is therefore unlike that found in the biologically active natural compounds.

Dimensions throughout most of the molecule are much as would be expected. ${ }^{11}$ There is a tendency for bond lengths in the t-butyl group and benzene rings to be smaller than normal, perhaps due to inaccuracies in atom placing associated with the high thermal parameters of end groups in the molecule. Table $4(c)$ shows the planarity of the benzene ring.
${ }^{8}$ A. J. C. Wilson, Nature, 1942, 150, 152.
${ }^{\circ}$ O. J. R. Hodder, C. K. Prout, and J. S. Rollett, 1968, unpublished results.

10 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
${ }_{11}$ Chem. Soc. Special Publ., No. 11, 1958.

The six-membered thiomorpholine ring has a nonplanar conformation approximating to the chair form of cyclohexane [cf. Table 4(a)]. Its geometry is illustrated

These may be compared with the angles found in cyclohexane derivatives which vary between 56 and $58^{\circ} .{ }^{12,13}$ The bond lengths are normal except for $\mathrm{C}(5)-\mathrm{C}(6)$, which

Figure 1 Stereoscopic view of the molecule as seen along the [100] direction

Figure 2 (a) The bond lengths (\AA); standard deviations vary from 0.003 to $0.007 \AA$
(b) The valency angles (deg.); standard deviations vary from 0.14 to 0.38°
in Figure 3 which combines two two-dimensional projections of the ring and also records the dihedral angles.

Figure 3 A combined view of two projections of the sixmembered ring containing atoms $\mathrm{N}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{S}(4), \mathrm{C}(5)$, and $\mathrm{C}(6)$
is a little short ($\mathbf{1} .51 \AA$) compared with the value accepted for $\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{3}\right)$ bonds ($1.54 \AA$).

The β-lactam ring is the one part of the molecule common to all the cephalosporins and penicillins. Here it is closely planar as shown in Table $4(b)$ and inclined to the mean plane of the thiomorpholine ring at an angle of $140 \cdot 8^{\circ}$. The bond $C(7)-C(8)$ appears a little lengthened to $1.54 \AA$, a distance similar to those observed in cyclobutane and its derivatives ${ }^{\mathbf{1 4}, 16}$ and in several other β-lactams. ${ }^{2,3,15}$ The relatively short $N(1)-C(8)$ bond ($\mathbf{1} \cdot 35 \AA$) is consistent with normal amide reson-
${ }^{12}$ W. Klyne and V. Prelog, Experientia, 1960, 16, 521.
${ }_{13}$ H. J. Geise, C. Altona, and C. Romers, Tetrahedron, 1967, 23, 439.

14 J. D. Dunitz, Acta Cryst., 1949, $2,1$.
15 R. Parthasarathy, Acta Cryst., 1970, B, 26, 1283.
${ }^{16}$ J. D. Dunitz and V. J. Schomaker, J. Chem. Phys., 1952, 20, 1703.

Table 2
Final positional co-ordinates of atoms in fractional units, with estimated standard deviations in parentheses

Atom	x	y	z
$\mathrm{N}(1)$	0.2263(1)	0.3468(3)	$0 \cdot 3931$ (1)
C(2)	$0 \cdot 2332$ (1)	$0 \cdot 3213$ (4)	$0 \cdot 4716$ (1)
$\mathrm{C}(3)$	$0 \cdot 3145$ (1)	$0 \cdot 3767(4)$	0.5228(1)
S(4)	$0 \cdot 3458$ (0)	$0 \cdot 6327(1)$	$0.5033(0)$
C(5)	$0 \cdot 3296(2)$	$0.5977(5)$	0.4042(2)
C(6)	$0 \cdot 2499$ (2)	0.5319 (5)	$0 \cdot 3601$ (2)
C(7)	0.2377(2)	$0 \cdot 3939$ (5)	$0 \cdot 2895(2)$
C(8)	0.2158(2)	$0 \cdot 2185(5)$	$0 \cdot 3334(2)$
$\mathrm{O}(9)$	$0 \cdot 1962$ (2)	$0 \cdot 0390$ (4)	$0 \cdot 3192(1)$
C(10)	$0 \cdot 1797(2)$	$0 \cdot 4447(5)$	0.2145(2)
$\mathrm{O}(11)$	$0 \cdot 1824(1)$	$0 \cdot 3815(4)$	$0 \cdot 1559(1)$
$\mathrm{O}(12)$	$0 \cdot 1242(1)$	$0 \cdot 5580$ (4)	$0 \cdot 2214(1)$
C(13)	$0.0612(2)$	0.6361 (6)	0.1553(2)
C(14)	$0.0183(3)$	$0 \cdot 7629$ (9)	$0 \cdot 1932(3)$
C(15)	$0.0162(2)$	0.4539 (9)	0.1111(2)
C(16)	$0.0912(3)$	0.7743(9)	$0 \cdot 1080$ (3)
C(17)	$0 \cdot 1793(2)$	$0 \cdot 4722(6)$	0.4887(2)
C(18)	0.2148(2)	0.0948 (5)	0.4853(2)
C(19)	$0 \cdot 3737(1)$	0.2210(4)	0.5222(1)
$\mathrm{O}(20)$	$0 \cdot 3784(1)$	$0 \cdot 1371$ (3)	$0 \cdot 4675(1)$
$\mathrm{O}(21)$	$0 \cdot 4235(1)$	$0 \cdot 1953$ (3)	$0 \cdot 5925(1)$
C(22)	$0 \cdot 4910$ (2)	0.0778 (6)	0.6012(2)
C(23)	$0 \cdot 5500$ (1)	$0 \cdot 1361$ (5)	0.6759(1)
C(24)	$0 \cdot 6088(2)$	0.0003 (6)	0.7082(2)
C(25)	$0 \cdot 6677(2)$	0.0526 (6)	0.7742(2)
C(26)	$0 \cdot 6674(2)$	$0 \cdot 2410$ (6)	0.8083(2)
C(27)	$0 \cdot 6084(2)$	$0 \cdot 3786(6)$	0.7770(2)
$\mathrm{C}(28)$	$0.5500(2)$	$0 \cdot 3256$ (5)	$0 \cdot 7110(2)$
H(3)	$0 \cdot 3170(15)$	$0 \cdot 3907(42)$	$0 \cdot 5761(15)$
$\mathrm{H}(51)$	$0 \cdot 3631$ (19)	$0 \cdot 4905(57)$	$0 \cdot 3954(19)$
$\mathrm{H}(52)$	$0 \cdot 3388(17)$	$0 \cdot 7351$ (55)	$0 \cdot 3879(18)$
$\mathrm{H}(6)$	$0 \cdot 2145(15)$	$0 \cdot 6503(45)$	$0 \cdot 3515(15)$
H(7)	$0 \cdot 2853(18)$	$0 \cdot 3638(49)$	0.2827(17)
$\mathrm{H}(141)$	$0 \cdot 0486(28)$	$0 \cdot 8628(78)$	0.2318(29)
$\mathrm{H}(142)$	-0.0092(31)	$0 \cdot 6486$ (88)	0.2166(30)
$\mathrm{H}(143)$	-0.0313(29)	$0 \cdot 8224$ (78)	0.1537(28)
$\mathrm{H}(151)$	$0.0009(28)$	$0 \cdot 3651$ (79)	$0 \cdot 1422(27)$
$\mathrm{H}(152)$	-0.0296(26)	$0 \cdot 5058(72)$	$0 \cdot 0663(26)$
$\mathrm{H}(153)$	0.0475(22)	$0 \cdot 3616$ (62)	0.0903(22)
$\mathrm{H}(161)$	$0 \cdot 0502(26)$	$0 \cdot 8435(76)$	$0 \cdot 0707(27)$
H (162)	$0 \cdot 1186(29)$	$0 \cdot 6784$ (82)	$0 \cdot 0788(28)$
H(163)	$0 \cdot 1232(29)$	$0 \cdot 8740$ (81)	$0 \cdot 1468(28)$
H(171)	$0 \cdot 1850(19)$	$0 \cdot 4557(57)$	$0 \cdot 5436(21)$
$\mathrm{H}(172)$	$0 \cdot 1301(21)$	$0 \cdot 4334(57)$	$0 \cdot 4574(20)$
$\mathrm{H}(173)$	$0 \cdot 1861(18)$	$0 \cdot 6257(57)$	$0 \cdot 4793(18)$
$\mathrm{H}(181)$	$0 \cdot 2479$ (20)	-0.0069(59)	$0 \cdot 4749(19)$
$\mathrm{H}(182)$	$0 \cdot 2217(18)$	$0 \cdot 0794(53)$	$0 \cdot 5393(20)$
$\mathrm{H}(183)$	$0 \cdot 1617(20)$	$0 \cdot 0506(58)$	$0 \cdot 4489$ (20)
$\mathrm{H}(221)$	$0 \cdot 5074(25)$	$0 \cdot 1116(69)$	$0.5541(26)$
$\mathrm{H}(222)$	$0 \cdot 4796(20)$	-0.0695(63)	$0 \cdot 5946(20)$
$\mathrm{H}(24)$	$0 \cdot 6043(20)$	-0.1344(61)	$0 \cdot 6808(20)$
$\mathrm{H}(25)$	$0 \cdot 7112(19)$	$-0.0507(56)$	$0 \cdot 7959(19)$
$\mathrm{H}(26)$	$0 \cdot 7075(19)$	$0 \cdot 2738(56)$	$0 \cdot 8563(20)$
$\mathrm{H}(27)$	0.6058(19)	$0 \cdot 5206(60)$	$0 \cdot 7983(19)$
$\mathrm{H}(28)$	$0 \cdot 5102(21)$	$0 \cdot 4226(60)$	$0 \cdot 6840$ (21)

Table 3
Bond lengths (\AA) and bond angles (deg.) involving hydrogen atoms, with estimated standard deviations in parentheses
(a) Distances
$\mathrm{C}(3)-\mathrm{H}(3)$
$\mathrm{C}(3)-\mathrm{H}(3)$
$\mathrm{C}(5)-\mathrm{H}(51)$
$\mathrm{C}(5)-\mathrm{H}(52)$
$\mathrm{C}(6)-\mathrm{H}(6)$
$\mathrm{C}(7)-\mathrm{H}(7)$
$\mathrm{C}(14)-\mathrm{H}(141)$
$\mathrm{C}(14)-\mathrm{H}(142)$
$\mathrm{C}(14)-\mathrm{H}(143)$
$\mathrm{C}(15)-\mathrm{H}(151)$
$\mathrm{C}(15)-\mathrm{H}(152)$
$\mathrm{C}(15)-\mathrm{H}(153)$
$\mathrm{C}(26)-\mathrm{H}(161)$
$\mathrm{C}(16)-\mathrm{H}(162)$
$\mathrm{C}(16)-\mathrm{H}(163)$

$1.00(0.03)$	$\mathrm{C}(17)-\mathrm{H}(171)$	$1.02(0.04)$
$0.99(0.04)$	$\mathrm{C}(17)-\mathrm{H}(172)$	$0.95(0.04)$
$0.97(0.04)$	$\mathrm{C}(17)-\mathrm{H}(172)$	$1.01(0.04)$
$0.99(0.03)$	$\mathrm{C}(18)-\mathrm{H}(181)$	$0.98(0.04)$
$0.99(0.03)$	$\mathrm{C}(18)-\mathrm{H}(182)$	$0.99(0.04)$
$0.98(0.06)$	$\mathrm{C}(18)-\mathrm{H}(183)$	$1.04(0.04)$
$1.09(0.06)$	$\mathrm{C}(22)-\mathrm{H}(221)$	$1.08(0.05)$
$1.04(0.06)$	$\mathrm{C}(22)-\mathrm{H}(222)$	$0.96(0.04)$
$0.94(0.05)$	$\mathrm{C}(24)-\mathrm{H}(24)$	$0.99(0.04)$
$1.03(0.05)$	$\mathrm{C}(25)-\mathrm{H}(25)$	$1.02(0.04)$
$1.02(0.04)$	$\mathrm{C}(26)-\mathrm{H}(26)$	$0.99(0.04)$
$0.96(0.05)$	$\mathrm{C}(27)-\mathrm{H}(27)$	$1.00(0.04)$
$1.08(0.06)$	$\mathrm{C}(28)-\mathrm{H}(28)$	$0.97(0.04)$

(b) Angles
$\mathrm{S}(4)-\mathrm{C}(3)-\mathrm{H}(3)$
$\mathrm{C}(19)-\mathrm{C}(3)-\mathrm{H}(3)$
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{H}(51)$
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{H}(52)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(52)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(51)$
$\mathrm{H}(51)-\mathrm{C}(5)-\mathrm{H}(52)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{H}(7)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(141)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(142)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(143)$
$\mathrm{H}(141)-\mathrm{C}(14)-\mathrm{H}(142)$
$\mathrm{H}(141)-\mathrm{C}(14)-\mathrm{H}(143)$
$\mathrm{H}(142)-\mathrm{C}(14)-\mathrm{H}(143)$
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(151)$
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(152)$
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(153)$
$\mathrm{H}(151)-\mathrm{C}(15)-\mathrm{H}(152)$
$\mathrm{H}(151)-\mathrm{C}(15)-\mathrm{H}(153)$
$\mathrm{H}(152)-\mathrm{C}(15)-\mathrm{H}(153)$
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(161)$
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(162)$
$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(163)$
$\mathrm{H}(161)-\mathrm{C}(16)-\mathrm{H}(162)$
$\mathrm{H}(161)-\mathrm{C}(16)-\mathrm{H}(163)$

Table 3 (Continued)

$103 \cdot 3(2)$	$\mathrm{H}(162)-\mathrm{C}(16)-\mathrm{H}(163)$	$118 \cdot 3(4)$
$108 \cdot 1(2)$	$\mathrm{C}(3)-\mathrm{C}(17)-\mathrm{H}(171)$	$109 \cdot 2(2)$
$112 \cdot 6(2)$	$\mathrm{C}(3)-\mathrm{C}(17)-\mathrm{H}(172)$	$107 \cdot 2(3)$
$104 \cdot 0(2)$	$\mathrm{C}(3)-\mathrm{C}(17)-\mathrm{H}(173)$	$115 \cdot 4(2)$
$109 \cdot 9(2)$	$\mathrm{H}(171)-\mathrm{C}(17)-\mathrm{H}(172)$	$109 \cdot 1(3)$
$107 \cdot 6(2)$	$\mathrm{H}(171)-\mathrm{C}(17)-\mathrm{H}(173)$	$108 \cdot 0(3)$
$111 \cdot 2(3)$	$\mathrm{H}(172)-\mathrm{C}(17)-\mathrm{H}(173)$	$107 \cdot 7(3)$
$111 \cdot 8(2)$	$\mathrm{C}(3)-\mathrm{C}(18)-\mathrm{H}(181)$	$112 \cdot 6(2)$
$114 \cdot 5(2)$	$\mathrm{C}(3)-\mathrm{C}(18)-\mathrm{H}(182)$	$108 \cdot 6(2)$
$111 \cdot 9(2)$	$\mathrm{C}(3)-\mathrm{C}(18)-\mathrm{H}(183)$	$111 \cdot 9(2)$
$108 \cdot 4(2)$	$\mathrm{H}(181)-\mathrm{C}(18)-\mathrm{H}(182)$	$107 \cdot 2(3)$
$115 \cdot 3(3)$	$\mathrm{H}(181)-\mathrm{C}(18)-\mathrm{H}(183)$	$103 \cdot 5(3)$
$105 \cdot 6(2)$	$\mathrm{H}(182)-\mathrm{C}(18)-\mathrm{H}(183)$	$112 \cdot 9(3)$
$111 \cdot 2(2)$	$\mathrm{O}(21)-\mathrm{C}(22)-\mathrm{H}(221)$	$108 \cdot 9(3)$
$111 \cdot 6(4)$	$\mathrm{O}(21)-\mathrm{C}(22)-\mathrm{H}(222)$	$109 \cdot 8(2)$
$115 \cdot 7(3)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(221)$	$113 \cdot 1(3)$
$95 \cdot 1(3)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(222)$	$114 \cdot 9(2)$
$111 \cdot 0(3)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	$114 \cdot 2(3)$
$110 \cdot 8(3)$	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	$124 \cdot 7(3)$
$111 \cdot 4(2)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	$118 \cdot 9(3)$
$110 \cdot 4(4)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	$121 \cdot 2(2)$
$105 \cdot 1(4)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}((26)$	$119 \cdot 9(2)$
$107.9(4)$	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	$120 \cdot 0(3)$
$1081(3)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	$123 \cdot 6(3)$
$109 \cdot 8(3)$	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}((27)$	$116 \cdot 5(3)$
$100 \cdot 9(3)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	$122.9(2)$
$107 \cdot 6(3)$	$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{H}(28)$	$116 \cdot 1(3)$
$111 \cdot 7(4)$		

Table 4

Displacements (\AA) from their mean planes of the atoms belonging to:
(a) The thiamorpholine ring
$\mathrm{S}(4) 0.316, \mathrm{~N}(1)-0 \cdot 118, \mathrm{C}(2) 0.195, \mathrm{C}(3)-0.298, \mathrm{C}(5)-0.286$, $C(6) 0.190$
(b) The β-lactam system
$\mathrm{N}(4)-0.005, \mathrm{C}(6) 0.004, \mathrm{C}(7)-0.004, \mathrm{C}(8) 0.003, \mathrm{O}(9) 0.001$
(c) The benzene ring
$\mathrm{C}(23) 0.005, \mathrm{C}(24)-0.004, \mathrm{C}(25) 0.000, \mathrm{C}(26) 0.003, \mathrm{C}(27)$ $-0.002, \mathrm{C}(28)-0.002$

Figure 4 Arrangement of the molecules in the unit cell as seen along the [010] direction
ance. ${ }^{17}$ Sweet and Dahl have recently suggested that there is a correlation between biological activity and the hybridisation state of the ring nitrogen atoms $\mathrm{N}(1)$. In the five biologically active compounds so far studied at all accurately, $\mathrm{N}(\mathbf{1})$ is the apex of a pyramid raised $0 \cdot 2-0 \cdot 4 \AA$ above the atoms attached to it. In our compound, $\mathrm{N}(\mathbf{1})$ is in a more nearly planar environment, only $0.067 \AA$ above the attached atoms, very similar to the distance, $0.065 \AA$, found by Sweet and Dahl in the inactive $\Delta 2$ cephalosporin derivative they studied. However the number of structures so far measured in the active and inactive groups is too small for any firm statistically significant deduction to be made.

Figure 4 shows the arrangement of the molecules in
the crystal as seen along the [010] direction. The molecule is essentially linear and lies nearly parallel to one of the diagonals of the ac plane, thus accounting for the short b axis dimension. Calculation of the intermolecular contact distances showed that none of them is significantly shorter than the sum of the van der Waal's radii of the corresponding atoms.

We thank O. J. R. Hodder for help in carrying out computations and for many useful discussions, and Mrs. S. Cutfield for help with the diagrams.
[2/1058 Received, 10th May, 1972]
${ }^{17}$ J. Donohue, L. R. Lavine, and J. S. Rollett, Acta Cryst., 1956, $9,655$.

[^0]: \dagger Present address: Department of Physics, Indian Institute of

[^1]: * It was realised later that, of these 65 peaks, 43 were spurious and had heights \geqslant the lowest peak height for a non-methyl atomic site in the molecule.
 \dagger Final observed and calculated structure factors and thermal parameters are listed in Supplementary Publication No. SUP 20548 ($19 \mathrm{pp} ., 1$ microfiche). For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.

